Advanced search
Start date
Betweenand


Expression, purification and activity assay of the DUF442 and ETHE1 of Blh protein of Xylella fastidiosa and Agrobacterium tumefaciens

Full text
Author(s):
Nayara Patricia Vieira de Lira
Total Authors: 1
Document type: Master's Dissertation
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Biologia
Defense date:
Examining board members:
Celso Eduardo Benedetti; Andrea Balan; Artur Torres Cordeiro
Advisor: Celso Eduardo Benedetti
Abstract

Xylella fastidiosa and Agrobacterium tumefaciens are phytopathogenic bacteria that infect, respectively, the xylem vessels and root vascular tissues, where the oxygen tension is relatively lower. Since Xylella and Agrobacterium are strict aerobic organisms, they use the bigR operon for the detoxification of hydrogen sulfide, a potent inhibitor of cytochrome c oxidase and aerobic respiration. The bigR operon encodes five proteins designated Blh (Beta-lactamase-like hydrolase), BigR (biofilm growth-associated repressor), a transcriptional repressor that regulates the operon, and MP1-3, proteins that act as a membrane transporter. In a previous work, it was shown that Agrobacterium mutants deficient in Blh production accumulated hydrogen sulfide, whereas BigR-deficient mutants secreted sulfite at higher levels than the wild type bacteria, indicating that Blh converted hydrogen sulfide into sulfite, which would be exported by the MP1-3 complex. In addition, molecular modeling indicated that Blh could function as a sulfur transferase and sulfur dioxigenase, since it carries a DUF442 (rhodanese) and ETHE1 (dioxygenase) domains. To test such hypothesis, this work aimed to demonstrate the enzymatic activities of the DUF442 and ETHE1 domains of Blh from Xylella and Agrobacterium, as well as to confirm protein-protein interactions between components of the bigR operon. Enzyme activity assays using the purified proteins confirmed the sulfur dioxygenase and rhodanese activities of the ETHE1 and DUF442 domains, respectively. In addition, it was found that both domains produce sulfite as a final product, although having different substrates. Furthermore, yeast two-hybrid assays showed that many of the bigR operon proteins interact with each other, suggesting the formation of a protein complex. However, no physical interactions were detected between DUF442 and ETHE1 domains, which, according to the enzyme activity assays, act independently. (AU)

FAPESP's process: 11/14969-8 - Purification, crystallization and catalytic activity of the ETHE1 and DUF442 domains of the BLH protein from Xylella fastidiosa and Agrobacterium tumefaciens
Grantee:Nayara Patricia Vieira de Lira
Support Opportunities: Scholarships in Brazil - Master