Advanced search
Start date

Ab initio Study of the Ligands and Temperature Effects on the Stability and Meta-stability of Metallic Nanoclusters

Full text
Diego Guedes Sobrinho
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Química de São Carlos (IQSC/BT)
Defense date:
Examining board members:
Juarez Lopes Ferreira da Silva; Eudes Eterno Fileti; Ricardo Paupitz Barbosa dos Santos; Albérico Borges Ferreira da Silva; Lara Kuhl Teles
Advisor: Juarez Lopes Ferreira da Silva

Transition metal nanoclusters (TM) with dimensions of &#126;1,0 nm have attracted great interest in various technological applications such as microelectronics, optics, magnetic devices and mainly as nanocatalysts. In this way, the morphology of these systems is a fundamental factor for optimization of performance in these applications, considering the direct relationship between the physicochemical properties and the atomic structure of the nanocluster determined by the ambient conditions (temperature and adsorbed molecules). In this sense, in view of the limitations on the precision of the experimental characterization techniques currently available, especially in nanometric dimensions, the use of computational calculations using first principles methods (ab initio) and based on the density functional theory is indispensable. Thus, in this work, the effects of binders and temperatures on the structural, electronic properties, stability and metastability of TM nanoclusters were investigated. (i) In this way, the (PH3)n and (SH2)n ligands effects with gradual saturation at n = 1, 6, 12 and 18 adsorbed onto nanoclusters Pt55 and Au55 with icosahedral (ICO), cuboctahedron (CUB), and distorted reduced core (DRC) structures were studied at 0K. In the gas phase, the DRC structures with 7 and 9 atoms in the core region are 5,34 eV (Pt55) and 2,20 eV (Au55) more stable than ICO model with symmetry Ih with 13 atoms in core. The results showed that there is a strong compression of the cationic core by the anionic surface induced by interactions of Coulomb (core+-surface-), leading to collapse and stress reduction of the symmetrical structures from the reduction of the number of atoms in the core region. However, the stability of the ICO structure increases with increasing Number of molecules adsorbed, so that DRC and ICO become approximately degenerated in energy in < 0,5 eV. In addition, ligands on the anionic surface reduces the transfer of charges between core+- surface-, contributing to the reduction of interactions of Coulomb and, consequently, alleviating the internal stress of the ICO. Similar result were obtained using triphenylphosphine (PPh3) as large ligands, in which the long carbon chains add side interactions between the ligands. (ii) PtnCo(55 - n) binares nanoclusters at 0K showed a high stability across the range of compositions, indicating a direct correlation between stability and homogeneous distribution of Pt and Co atoms forming the nanoalloys with ICO structure. However, under a saturated atmosphere of adsorbed CO ligands, the stability of the nanoaaloys decreases (increases) to compositions with large amounts of Pt (Co). Analyzes have shown that under the effects of adsorption the compositions remain with ICO configuration, except for Pt42Co13 (Co@Pt as core@shell in gas-phase), where Co molecules displace the Co atoms to the surface, and then inducing an amorphization process for a structure formed with Pt atoms occupying the core. To investigate the temperature effects on the stability and metastability of Au nanoclusters and clusters by using Born-Oppenheimer molecular dynamics, medium size nanoclusters of Au25, Au38, and Au40 were used in gas-phase and clusters of Au13 under different saturated atmospheres of CO. (iii) It has been observed that at temperatures of 300, 400, 500, and 600 K, the nanoclusters exhibit dynamic structures for the core-surface regions with cationic tetrahedral (4 atoms) or T-bipyramidal (5 atoms) cores weakly bound to the flexible anionic surface. A statistical approach using a dimensionality reduction algorithm for two-dimensional Euclidean space representation, called sketch-map, was proposed as a new language to analyze the free energy surface (FES) of the systems calculated on the approximation of multistate Bennet acceptance-ratio. The FES was used as a qualitative analysis of the stable and metastable configurations under the effect of temperature, indicating the preferred regions of the configurational space of each nanocluster investigated. (iv) By including the effects of ligands and temperatures on Au13 clusters, it was observed that at high temperatures the Au13 clusters in gas-phase tend to have more open configurations with less bond length relative to three-dimensional structures. On the other hand, the saturation of the environment with CO ligands restricts the mobility of the atoms in Au13 clusters, favoring the sampling of three-dimensional structures even at temperatures relatively high. The charge population analysis showed a high concentration of electrons in the O atoms, so that the strong cationic character of the Au13 clusters leads to increased atomic coordination, contributing to the stabilization of the more three-dimensional. (AU)

FAPESP's process: 13/15112-9 - Ab initio study of the effects of ligands on the atomic structure, electronic stability and transition metal nanoclusters
Grantee:Diêgo Guedes Sobrinho
Support Opportunities: Scholarships in Brazil - Doctorate