Advanced search
Start date
Betweenand


Liposomes and immunoliposomes containing antitumor drugs: development, characterization and evaluation of the efficacy against breast cancer

Full text
Author(s):
Josimar de Oliveira Eloy
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Ciências Farmacêuticas de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Juliana Maldonado Marchetti; Marlus Chorilli; Renata Fonseca Vianna Lopez; Rose Mary Zumstein Georgetto Naal
Advisor: Juliana Maldonado Marchetti; Robert Lee
Abstract

Breast cancer represents a severe public health problem. Among the drugs used in the treatment, paclitaxel is an effective cytotoxic drug, but associated with side effects. Hydrocloride metformin has shown promising results for cancer treatment, however it is very hydrophilic, a limiting factor for bioavailability. Rapamycin has demonstrated synergism with paclitaxel and potent anticancer activity, though it is a lipophilic drug with drawbacks that compromise its bioavailability. Nanostructured drug delivery systems, such as PEGylated liposomes are largely employed for pharmacokinetics improvement and enhancement of therapeutic effect. Furthermore, the functionalization of liposomes with monoclonal antibodies enables the selective delivery of the loaded drug to the target cell. In the present work, we aimed to develop and characterize liposomes and immunoliposomes functionalized with trastuzumab, containing paclitaxel, hydrocloride metformin and/or rapamycin, as well as to evaluate the formulations through in vitro and in vivo studies. The results showed that hydrocloride metformin was encapsulated with low efficiency, less than 20%, on the other hand paclitaxel and rapamycin could be co-loaded with suitable values of encapsulation efficiency, 56.32% for paclitaxel and 73.31% for rapamycin and nanometric particle size, 136.95 nm, based on a SPC:Chol:DSPE-PEG(2000) composition. The two drugs displayed slow release, and were converted to molecular and amorphous form, respectively for paclitaxel and rapamycin when encapsulated. The immunoliposomes were developed with high efficiency with trastuzumab and kept the nanometric size, with adequate encapsulation of drugs. Moreover, herein it was shown the synergism between paclitaxel and rapamycin co-loaded in liposomes in triple negative cells (4T1) and there was synergism between the two drugs mediated by the antibody in immunoliposomes in the HER2-positive cell line (SKBR3), due to the improved cell uptake mediated by trastuzumab. Finally, the results obtained in vitro were confirmed in vivo. Co-loaded paclitaxel and rapamycin were able to control tumor growth in a triple negative breast cancer animal model, while the immunoliposome containing the two drugs allowed for better control of tumor growth in a HER2-positive breast xenograft model, whose average tumor volume corresponded to 25.27%, 44.38% and 47.78% of the tumor volumes of positive control, negative control and liposome, respectively. Therefore, the formulation developed herein has potential to be evaluated in clinical trials. (AU)

FAPESP's process: 12/10388-3 - Liposomes and immunoliposomes containing anticancer drugs: development, characterization and efficacy evaluation against breast cancer
Grantee:Josimar de Oliveira Eloy
Support Opportunities: Scholarships in Brazil - Doctorate