Advanced search
Start date
Betweenand


Mathematical modeling of vanadium redox batteries

Full text
Author(s):
Milton de Oliveira Assunção Junior
Total Authors: 1
Document type: Master's Dissertation
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Defense date:
Examining board members:
José Alberto Cuminato; Leandro Franco de Souza; Michael Vynnycky
Advisor: José Alberto Cuminato
Abstract

Mathematical modelling using differential equations is an important tool to predict the behavior of vanadium redox batteries, since it may contribute to improve the device performance and lead to a better understanding of the principles of its operation. Modelling can be complemented by asymptotic analysis as a mean to promote reductions or simplifications that make models less complex. Such simplifications are useful in this context, whereas these models usually addresses one cell only the smallest operating unit while real applications demand tens or hundreds cells implying on larger computational requirements. In this research, several options for asymptotic reductions were investigated and, applied to different models, were able to speed up the processing time in 2.46× or reduce the memory requirements up to 11.39%. The computational simulations were executed by COMSOL Multiphysics v.4.4, also by in-house code developed in MATLAB. The validation of results was done by comparing it to experimental results available in literature. Additionally, correlating the results provided by COMSOL with the ones arising from the implemented sub-routines allowed to validate the developed algorithm. (AU)

FAPESP's process: 13/15875-2 - Mathematical modelling of vanadium redox batteries
Grantee:Milton de Oliveira Assunção Junior
Support type: Scholarships in Brazil - Master