Advanced search
Start date
Betweenand


Potential regulation of PTEN phosphatase by PP2A and SET proteins and its role in oral cancer predisposition

Full text
Author(s):
Camila Sayuri Matsumoto
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Ciências Farmacêuticas de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Andréia Machado Leopoldino; Ricardo Della Coletta; Vitor Marcel Faça
Advisor: Andréia Machado Leopoldino; Cristiane Helena Squarize
Abstract

Cancer is the second cause of death in Brazil and the oral cancer is among the most predominant cancers worldwide. During tumorigenesis several changes occur in the genome, transcriptome, proteome and interatoma leading to malignant cells development. Some of the more important modifications occur in the PI3K-Akt pathway, such as the loss of PTEN phosphatase function, which increase PIP3 and results in the constitutive activation of downstream targets, including the kinase Akt. PP2A is responsible for the negative regulation of Akt and is inhibited by SET (or Inhibitor 2 of PP2A). Many mechanisms can lead to deregulation of these signaling pathways and the increase in one protein can result in pathway loss of balance. Recently Leopoldino et.al. (2009) identified SET levels increased in oral cancer tissue samples, associate to Akt activation. The main objective of this project is evaluating how PP2A and SET regulate PTEN and its relation to cancer predisposition. For this, expression vectors were used to identify, among others, B56? subunit of PP2A reducing levels of p-PTEN S380; the interaction between PP2A and PTEN was confirmed by co-immunoprecipitation (co-IP) and immunofluorescence; PP2A and PTEN activity were evaluated against expression of SET and SET regions in the presence or not of site-specific mutations; and PTEN expression levels were related to the accumulation or silencing (siRNA and shRNA) of SET in CECPs and the treatment with agents for hyperacetylation (TSA) and demethylation (5-aza-deoxycytidine). The role of PTEN on BMAL1 expression was evaluated in vitro and in vivo, using transgenic animals with tissue-specific deletion of PTEN for epithelium. The results suggest the involvement of SET in control of PTEN gene expression and participation of PTEN in the control of BMAL expression. (AU)

FAPESP's process: 10/17985-1 - Potential regulation of PTEN phosphatase by PP2A and set proteins and its role in oral cancer predisposition
Grantee:Camila Sayuri Matsumoto
Support Opportunities: Scholarships in Brazil - Doctorate (Direct)