Advanced search
Start date
Betweenand


Route planning for UAVs with risk of critical failure: a security-based approach

Full text
Author(s):
Jesimar da Silva Arantes
Total Authors: 1
Document type: Master's Dissertation
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Defense date:
Examining board members:
Cláudio Fabiano Motta Toledo; Luiz Henrique Andrade Correia; Carlos Henrique Quartucci Forster; Denis Fernando Wolf
Advisor: Cláudio Fabiano Motta Toledo
Abstract

The security involved in flights of Unmanned Aerial Vehicles (UAVs) is an important issue and is achieving prominence due to a number of accidents involving such aircraft. Other elements that deserve highlights are the increase in the number of aircraft in the airspace and autonomy to perform missions, however, little attention has been given to the autonomy of the aircraft in emergency cases [Context]. In this context, the development of algorithms that contribute significantly to the path planning in the event of critical situations is essential for more air traffic. Possible situations of insecurity may be related to a failure in the equipment of vehicle that prevents the continuation of the current mission by aircraft [Gap]. The research advances the state of the art considering a concept called In-Flight Awareness (IFA), which provides situational awareness in UAVs aiming at greater flight safety. Advances also in the developing of mathematical models that represent the state of the damaged aircraft, with the purpose to execute the emergency landing by minimizing damages [Purpose]. Thus, this work applies evolutionary computation techniques such as Genetic Algorithms (GA) and Multi-Population Genetic Algorithms (MPGA), as well as a Greedy Heuristic (GH) and a Mixed Integer Linear Programming (MILP) model to deal with critical situations along with the concept of IFA [Methodology]. The solutions obtained were evaluated through offline experiments using the developed mathematical models, which were validated in a flight simulator and a real-world flight. In General, the GA and MPGA reached similar results by saving the UAV in approximately 89% of the maps, while the GH was able to bring the aircraft to a bonus region for 77% of maps within a feasible computational time lower than 1 second. In the MILP model, the time spent was about four minutes since it guarantees optimality of the solution found. Due to such high computational time, a strategy involving nearby routes pre-calculated was defined from the MILP which was very promising. In experiments involving flight simulator, different wind conditions were tested and it was found that even under such conditions the methods developed have managed to execute the landing safely [Result]. The work presented collaborates with the safety of Unmanned Aerial Vehicles and with the proposal of mathematical models that represent the aircraft under critical situations. The methods, in general, were promising since they brought the aircraft to execute a safe landing within a low computational time as shown by offline simulations, flight simulator and real flight [Conclusion]. The main contributions are: fault modeling, system architecture planner routes and linear model for emergency landing. [Contribution]. (AU)

FAPESP's process: 14/12297-0 - Mission planning in UAVs with risk of critical failure: a security-based approach
Grantee:Jesimar da Silva Arantes
Support type: Scholarships in Brazil - Master