Advanced search
Start date

Graph construction based on neighborhood for semisupervised

Full text
Lilian Berton
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Defense date:
Examining board members:
Alneu de Andrade Lopes; Estevam Rafael Hruschka Júnior; Alípio Mário Guedes Jorge; Zhao Liang; Gonzalo Travieso
Advisor: Alneu de Andrade Lopes

With the increase capacity of storage, databases are getting larger and, in many situations, only a small subset of data items can be labeled. This happens because the labeling process is often expensive, time consuming and requires the involvement of human experts. Hence, several semi-supervised algorithms have been proposed, showing that it is possible to achieve good results by using prior knowledge. Among these algorithms, those based on graphs have gained prominence in the area. Such interest is justified by the benefits provided by the representation via graphs, such as the ability to capture the topological structure of the data, represent hierarchical structures, as well as model manifold in high dimensional spaces. Nevertheless, most of available data is represented by attribute-value tables, making necessary the study of graph construction techniques in order to convert these tabular data into graphs for applying such algorithms. As the generation of the weight matrix and the sparse graph, and their relation to the performance of the algorithms have been little studied, this thesis investigated these aspects and proposed new methods for graph construction with characteristics litle explored in the literature yet. We have proposed three methods for graph construction with different topologies: 1) S-kNN (Sequential k Nearest Neighbors) that generates regular graphs; 2) GBILI (Graph Based on the informativeness of Labeled Instances) and RGCLI (Robust Graph that Considers Labeled Instances), which exploit the labels available generating power-law graphs; 3) GBLP (Graph Based on Link Prediction), which are based on link prediction measures and generates small-world graphs. The strategies proposed were analyzed by graph theory and complex networks measures and validated in semi-supervised classification tasks. The methods were applied in benchmarks of the area and also in the music genre classification and image segmentation. The results show that the topology of the graph directly affects the classification algorithms and the proposed strategies achieve good accuracy. (AU)

FAPESP's process: 11/21880-3 - Networks construction for semi-supervised learning
Grantee:Lilian Berton
Support Opportunities: Scholarships in Brazil - Doctorate