Advanced search
Start date
Betweenand


Service-life of self-cleaning cool coating.

Full text
Author(s):
Ana Paula Werle
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Escola Politécnica (EP/BC)
Defense date:
Examining board members:
Vanderley Moacyr John; Vahan Agopyan; Antonio Carlos Vieira Coelho; Lucila Chebel Labaki
Advisor: Vanderley Moacyr John
Abstract

Considering aspects related to the indoor thermal comfort in buildings and reducing energy demand for cooling, the use of cool coatings (have high reflectance and emittance of solar radiation) can be a reasonable alternative to achieve these conditions. However, its durability is the critical path. This study aims to measure the durability of multifunctional coating that combines cool and self-cleaning properties. To attain this goal a single-layer cement coating was formulated, with and without pigment added, both with high initial reflectance and emissivity. To maintain these properties over time a coating of TiO2 in crystalline form of anatase was applied to the coating in two ways: in the first way, the particles were mixed to the cementitious layer, and in the second, they were applied superficially as a post-treatment layer. The exposure to UV radiation provides the photoactivation of anatase, activating the oxidation of organic matter and altering the contact angle between water and surface, facilitating the drag of dirt when wet making it self-cleaning. The performance of cool properties and the permanence of TiO2 particles on the surface were evaluated at 6 and 12 months of natural exposure in Ubatuba, Pirassununga and São Paulo. After aging the determinant influence of the sites\' exposure characteristics in the materials performances was observed. A small tendency of improved performance with TiO2 added to the cement layer was verified. In addition, it was noted that these coatings presented higher durability in comparison to the post-treatment layer due to the leaching process, which exposes encapsulated particles in the cementitious mix, providing longer interaction with UV radiation and the organic matter to be degraded. On the other hand leaching caused the partial removal of anatase in the post-treated surfaces. Despite better performance of the TiO2 added coating, the exposure time was insufficient to affirm this behavior because the results are too close to each other. (AU)

FAPESP's process: 11/22785-4 - Service life of self-cleaning cool coatings
Grantee:Ana Paula Werle
Support type: Scholarships in Brazil - Doctorate