Advanced search
Start date
Betweenand


A numerical approach to the mechanics of lipid interfaces: modeling and simulation

Full text
Author(s):
Diego Samuel Rodrigues
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Defense date:
Examining board members:
Gustavo Carlos Buscaglia; Pablo Javier Blanco; João Paulo Gois; Sergio Persival Baroncini Proenca; Fabrício Simeoni de Sousa
Advisor: Gustavo Carlos Buscaglia
Abstract

Cell mechanics lies on the material properties of the plasmatic membrane, fundamentally a two-molecule-thick phospholipid bilayer. Other than bending elastic forces, such a two-dimensional interfacial material also experiences viscous stresses due to its (presumably Newtonian) surface fluid tangential behaviour. Despite the remarkable agreement on membrane shapes between theory and biophysical experiments, there is no computational method for simulating its (actual) viscous dynamics governed by the Boussinesq- Scriven law. Accordingly, we introduce a mixed three-field variational formulation for viscous flows of closed curved surfaces. In it, the bulk fluid is taken into account by means of an enclosed-volume constraint, whereas an area constraint stands for the membranes inextensible character. The unknowns are the velocity, vector curvature and surface pressure fields, all of which are interpolated with linear continuous finite elements by means of a pressure-gradient-projection scheme. The method is semi-implicit and it requires the solution of a single linear system per time step. Another proposed ingredient is a numerical force that emulates the action of an optical tweezer, allowing for virtual interaction with the membrane, where mesh quality and refinement are maintained by adaptively remeshing. Extensive relaxation experiments are reported and compared with quasi-analytical solutions. Conditional time stability is observed, with a time step restriction that scales as the square of the mesh size. We discuss both convergence and the stability limits of our method, its ability to correctly predict the dynamical equilibrium of the tether due to tweezing. The dependence of the membrane shape on imposed tweezing velocities is also addressed. Basically, there is a threshold velocity value below which the tethers shape does not arise at first. Further tests illustrate the robustness of the method and show the significance of viscous effects on membranes deformation under external forces. Undoubtedly, there is still a long way to track toward the understanding of celullar mechanics (one still has to account other structures such as cytoskeleton, ion channels, transmembrane proteins, etc). The first step has given, though: the design of a numerically robust variational scheme capable of simulating the engrossing dynamics of fluid cell membranes. (AU)

FAPESP's process: 11/01800-5 - Numerical techniques for microscopic phenomena in fluid dynamics
Grantee:Diego Samuel Rodrigues
Support Opportunities: Scholarships in Brazil - Doctorate