Advanced search
Start date

Evaluation in vitro and in vivo of liquid crystalline nanodispersions for delivery of siRNA-TyRP-1 for topical treatment of vitiligo

Full text
Larissa Bueno Tofani
Total Authors: 1
Document type: Master's Dissertation
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Ciências Farmacêuticas de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Maria Vitoria Lopes Badra Bentley; Priscyla Daniely Marcato Gaspari; Gislaine Ribeiro Pereira
Advisor: Maria Vitoria Lopes Badra Bentley

The RNA interference (RNAi) is a process involved with the post-transcriptional gene silencing being elucidated by double-stranded RNA molecules of 21-25 nucleotides, the small interfering RNA (siRNA) that occurs naturally in a wide variety of animals, plants and microorganisms. This process has shown potential use for the treatment of diseases in which there is overexpression of genes, as they offer several advantages such as the possibility of using this regulatory mechanism just by knowing the sequence of the therapeutic gene, lower toxicity and high specificity. However, the main challenge is to develop safe and effective vectors that enable the use of siRNA as a therapy, since they allow the protection of siRNA against enzymatic degradation, have prolonged half-life in the bloodstream and provide an effective endosomal escape. Accordingly, liquid crystal nanoparticles associated with the cationic polymer polyethylenimine (PEI) were evaluated as potential non-viral vectors for specific siRNA for the protein related to tyrosinase-1 (TyRP-1) as an alternative for the topical treatment of vitiligo. For this, the liquid crystals containing PEI were complexed to siRNA and evaluated for liquid crystalline structure by polarized light microscopy and X-ray diffraction (SAXS), particle size / polydispersity index, zeta potential and complexation efficiency. The cytotoxicity of the systems was evaluated by MTT assay and flow cytometry in melan-A melanocytes and the evaluation of cellular uptake was performed by fluorescence microscopy and flow cytometry. The different systems containing the polymer PEI exhibited liquid crystalline structures of hexagonal and lamellar phases by SAXS analysis, however, the analysis under polarized light microscopy showed liquid crystalline structures of hexagonal phase, lamellar and isotropic. The analysis of particle size showed the presence of nanostructured systems that were capable of complexing to the siRNA at concentration of 10 ?M. Studies in cell culture demonstrated a higher viability of melan-A cells after treatment with the liquid crystalline nanodispersions formed by monolein (MO), oleic acid (OA) and PEI in relation to the cationic polymer PEI in its free form. Regarding cellular uptake by fluorescence microscopy and flow cytometry was observed the high efficiency in uptake melan-A cells mediated by liquid crystalline nanodispersions formed by system MO:OA:PEI. Results inhibition of the expression of TyRP-1 protein were observed by Western Blotting in melan-A cells, after administration of liquid crystalline nanodispersions associated with specific siRNA-TyRP-1. The liquid crystalline nanodispersions evaluated also provided greater release of siRNA in the skin in an animal model. These results demonstrate the potential use of these systems for antisense therapy of skin diseases such as vitiligo, thus representing, an important contribution to the topical gene therapy for this disease (AU)

FAPESP's process: 13/06559-0 - In vitro and in vivo evaluation of liquid-crystalline nandispersions to deliver siRNA-TRP-1 as an alternative for the topical treatment of vitiligo
Grantee:Larissa Bueno Tofani
Support Opportunities: Scholarships in Brazil - Master