Advanced search
Start date
Betweenand

Design and Characterization of Multifunctional Xylanolytic Enzymes

Abstract

Biodegradation of lignocellulose has been the focus of intense study because of its applicability in sustainable biotechnological processes. The use of enzymes for the processing of lignocellulosic material is a key step not only in the production of second generation bioethanol, but also presents an opportunity to reduce input and energy costs in the pulp and paper industry, in the food industry and in biorefinery. Enzymes represents a significant fraction of the costs associated with the saccharification of lignocellulosic material, and protein engineering strategies can be applied to improve the performance of these biocatalysts. The current project proposes to use rational and semi-rational methods of protein design to create multifunctional chimeric enzymes to act synergistically in the degradation of arabinoxylan, one of the most abundant polysaccharides in the cell wall of plants and a source of C5 and C6 sugars. The project involves a two-stage experimental strategy; 1) evaluate the products generated from the action of mixtures of xylyanalytic enzymes against the arabinoxylan substrate using LC-MS and HPAEC-PAD. This step will identify complementary enzymatic activities, as well as the combinations of enzymes that demonstrate synergistic activities, and 2) application of rational and semi-rational protein design methodologies to create multifunctional enzymes using a beta-prism scaffold protein designed ab initio in the LBBP, together with the characterization of the catalytic properties of the chimeric enzymes. (AU)

Articles published in Agência FAPESP Newsletter about the research grant:
Articles published in other media outlets (0 total):
More itemsLess items
VEICULO: TITULO (DATA)
VEICULO: TITULO (DATA)

Scientific publications
(References retrieved automatically from Web of Science and SciELO through information on FAPESP grants and their corresponding numbers as mentioned in the publications by the authors)
FURTADO, GILVAN PESSOA; CARLI, SIBELI; MELEIRO, LUANA PARRAS; SANTOS SALGADO, JOSE CARLOS; WARD, RICHARD JOHN. Enhanced hydrolytic efficiency of an engineered CBM11-glucanase enzyme chimera against barley beta-D-glucan extracts. Food Chemistry, v. 365, DEC 15 2021. Web of Science Citations: 0.
PINHEIRO, P. MATHEUS; REIS, A. G. RENATA; DUPREE, PAUL; WARD, J. RICHARD. Plant cell wall architecture guided design of CBM3-GH11 chimeras with enhanced xylanase activity using a tandem repeat left-handed beta-3-prism scaffold. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, v. 19, p. 1108-1118, 2021. Web of Science Citations: 0.

Please report errors in scientific publications list by writing to: cdi@fapesp.br.