Advanced search
Start date

Role of gamma-carboxyglutamic protein functional imbalance in vascular calcification modulation of diabetic patients with peripheral arterial disease

Grant number: 16/17961-1
Support Opportunities:Regular Research Grants
Duration: December 01, 2016 - May 31, 2019
Field of knowledge:Health Sciences - Medicine - Medical Clinics
Principal Investigator:Marcel Liberman
Grantee:Marcel Liberman
Host Institution: Instituto Israelita de Ensino e Pesquisa Albert Einstein (IIEPAE). Sociedade Beneficente Israelita Brasileira Albert Einstein (SBIBAE). São Paulo , SP, Brazil
Associated researchers:Elisangela Farias Silva


Obstructive atherosclerotic lesions of vessels distal to aortic bifurcation (iliac artery), decreasing oxygen delivery to tissues is the hallmark of obstructive peripheral arterial disease (PAD). The most important complication of PAD is extremity amputation, in which peripheral arterial insufficiency (ischemia) participates of its pathophysiology in 80% of cases. Amputations due to PAD occur predominantly in lower-extremities (85%). PAD has high incidence in patients with diabetes mellitus (DM), that also constitutes in a risk factor for heart failure and coronary artery disease. To depict the importance of diabetes, 45% of patients submitted to lower-limb amputation (LLA) caused by PAD have DM.In diabetic and PAD patients, vascular calcification (VC) coincidently is very prevalent. VC implicates in higher risk of obstruction of blood flow, through effects that worsen vascular blood flow auto-regulation, such as increase in vascular rigidity and pulse pressure (Windkessel effect), thus contributing to limb claudication progression and limb infection (diabetic foot), finally causing lower limb amputation. Previously considered a passive degenerative disease of aging, VC is now understood as a pathophysiologic condition mediated by specific cellular signaling and stimulatory/inhibitory mediators. Although studies pointed out an association between VC and DAP in patients with DM, signaling mechanisms that promote or attenuate VC progression in DM are scarce. To understand this specific pathophysiology and cellular signaling we studied VC in animal model of DM, specifically in obesity and insulin resistance (ob/ob mice). We described that BMP-2 (bone morphogenetic protein-2), an osteogenic stimulus, present in coronary plaques and in PAD, promotes increased ob/ob vascular smooth muscle cells (VSMCs) osteoblastic dedifferentiation in comparison to C57BL/6, by increasing MSX2 and RUNX2 and finally increasing VSMCs calcification.Conversely, MGP (gamma-carboxyglutamic protein) has important inhibitory role in VC progression. Its active form occurs by post-translational modification dependent on Vitamin K, which promotes carboxylation of glutamic residues, besides being phosphorylated in serine residues. MGP knockout mice develop calcification through the entire vascular wall, determining higher mortality. Clinical studies in patients with renal failure and DM demonstrated increased serum dephosphorylated MGP, in uncarboxylated form (inactive form) coincidently in individuals with higher prevalence of VC. Although they found this biomarker, its functional role in cellular signaling to determine VSMC dedifferentiation into osteochondrogenic cells is unknown. This scenario motivated us to conceive this proposal, conceptually focused on a translational design study, by isolating VSMCs from amputated arterial segments in order to quantify specific genomic and proteomic profile through a calcifying model in culture and assessing inhibitory role of MGP active/inactive forms. This model can unveil relevant aspects of the role of MGP in specific modulation of cellular signaling pathways during VSMCs osteogenic differentiation, more importantly in diabetic amputated patients. (AU)

Articles published in Agência FAPESP Newsletter about the research grant:
Articles published in other media outlets (0 total):
More itemsLess items

Scientific publications
(References retrieved automatically from Web of Science and SciELO through information on FAPESP grants and their corresponding numbers as mentioned in the publications by the authors)
ALMEIDA, YOURI E.; FESSEL, MELISSA R.; DO CARMO, LUCIANA SIMAO; JORGETTI, VANDA; FARIAS-SILVA, ELISANGELA; PESCATORE, LUCIANA ALVES; GAMARRA, LIONEL F.; ANDRADE, MARIA CLAUDINA; SIMPLICIO-FILHO, ANTONIO; PITANGUEIRAS MANGUEIRA, CRISTOVAO LUIS; et al. Excessive cholecalciferol supplementation increases kidney dysfunction associated with intrarenal artery calcification in obese insulin-resistant mice. SCIENTIFIC REPORTS, v. 10, n. 1, . (13/09652-0, 16/17961-1, 13/09611-2, 15/25923-0)
PESCATORE, LUCIANA A.; GAMARRA, LIONEL F.; LIBERMAN, MARCEL. Multifaceted Mechanisms of Vascular Calcification in Aging. ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, v. 39, n. 7, p. 1307-1316, . (15/25923-0, 16/17961-1, 16/21470-3)

Please report errors in scientific publications list by writing to: