Advanced search
Start date
Betweenand

Systems and partial differential equations

Grant number: 19/02512-5
Support Opportunities:Research Projects - Thematic Grants
Duration: September 01, 2019 - August 31, 2024
Field of knowledge:Physical Sciences and Mathematics - Mathematics - Analysis
Principal Investigator:Marcelo da Silva Montenegro
Grantee:Marcelo da Silva Montenegro
Host Institution: Instituto de Matemática, Estatística e Computação Científica (IMECC). Universidade Estadual de Campinas (UNICAMP). Campinas , SP, Brazil
Pesquisadores principais:
Ademir Pastor Ferreira ; Gabriela Del Valle Planas
Associated researchers:Alessio Fiscella ; Anne Caroline Bronzi ; Bianca Morelli Rodolfo Calsavara ; Djairo Guedes de Figueiredo ; Mahendra Prasad Panthee ; Marcelo Martins dos Santos ; Marcia Assumpcao Guimaraes Scialom
Associated grant(s):22/05646-5 - A qualitative study of solutions to some water wave models, AV.EXT
Associated scholarship(s):23/00500-5 - Introduction to Partial Differential Equations, BP.IC
21/09611-9 - Basic Mathematical fluid dynamics, BP.IC
21/04999-9 - Evolution of the radius of analyticity for dispersive equations and systems involving them, BP.PD
+ associated scholarships 20/10185-1 - Local and global behaviour of solutions of dispersive equations, BP.PD
21/05630-9 - Wave equation: weak solution and energy decay, BP.IC
21/00196-9 - Exact controllability to trajectories and approximate controllability for semilinear heat equation, BP.MS
20/14206-3 - Existence of weak solutions for a cell-fluid Navier-Stokes model with chemotaxis, BP.PD
20/14226-4 - Dispersive equations: Controllability and stabilization in periodic domains, BP.PD - associated scholarships

Abstract

The project consists of the study of central themes in partial differential equations and non-linear systems, both evolutionary and stationary. The main objective of our research are themathematical aspects of equations and systems that have great interaction with geometric pro-blems, reaction and diffusion models, phenomena in thermomechanics of continuous media andphysical-chemical behavior. We are interested in showing the existence of solutions and theirgeometric properties, regularity, uniqueness or not, stability or instability, formation of singula-rities or vortices, asymptotic behavior, approximation of solutions, well-posedeness, scatteringand dependence with respect to the initial data or any other important parameters that mayoccur in the problem. The mathematical techniques to be used rest on nonlinear analysis,variational methods, Schauder theory, approximation methods, subsolution and supersolutionmethod, Galerkin method, semigroup theory, Kato theory, among others. (AU)

Articles published in Agência FAPESP Newsletter about the research grant:
More itemsLess items
Articles published in other media outlets ( ):
More itemsLess items
VEICULO: TITULO (DATA)
VEICULO: TITULO (DATA)

Scientific publications (32)
(References retrieved automatically from Web of Science and SciELO through information on FAPESP grants and their corresponding numbers as mentioned in the publications by the authors)
ZUO, JIABIN; FISCELLA, ALESSIO; BAHROUNI, ANOUAR. xistence and multiplicity results for p(.)&q(.) fractional Choquard problems with variable orde. Complex Variables and Elliptic Equations, v. 67, n. 2, . (19/23917-3, 19/02512-5)
PEREIRA, ANDRE FERREIRA E.; PLANAS, GABRIELA. Mathematical analysis of a model describing solute trapping during solidification of binary alloys. APPLICABLE ANALYSIS, . (19/02512-5)
CARDOSO, MYKAEL; GUZMAN, CARLOS M.; PASTOR, ADEMIR. Global well-posedness and critical norm concentration for inhomogeneous biharmonic NLS. MONATSHEFTE FUR MATHEMATIK, . (19/02512-5)
GUZMAN, CARLOS M.; PASTOR, ADEMIR. Some remarks on the inhomogeneous biharmonic NLS equation. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, v. 67, p. 17-pg., . (19/02512-5)
FISCELLA, ALESSIO; MARINO, GRETA; PINAMONTI, ANDREA; VERZELLESI, SIMONE. Multiple solutions for nonlinear boundary value problems of Kirchhoff type on a double phase setting. REVISTA MATEMATICA COMPLUTENSE, v. N/A, p. 32-pg., . (19/02512-5)
FARKAS, CSABA; FISCELLA, ALESSIO; WINKERT, PATRICK. On a class of critical double phase problems. Journal of Mathematical Analysis and Applications, v. 515, n. 2, p. 16-pg., . (19/23917-3, 19/02512-5)
LOPES, JULIANA HONDA; PLANAS, GABRIELA. EXISTENCE OF SOLUTIONS FOR A NON-ISOTHERMAL NAVIER-STOKES-ALLEN-CAHN SYSTEM WITH THERMO-INDUCED COEFFICIENTS. Electronic Journal of Differential Equations, v. 2022, n. 72, p. 22-pg., . (20/14206-3, 19/02512-5)
LOPES, JULIANA HONDA; PLANAS, GABRIELA. Existence of weak solutions for a nonhomogeneous incompressible cell-fluid Navier-Stokes model with chemotaxis. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, v. N/A, p. 21-pg., . (19/02512-5, 20/14206-3)
CHEN, SITONG; FISCELLA, ALESSIO; PUCCI, PATRIZIA; TANG, XIANHUA. Coupled elliptic systems in R-N with (p, N) Laplacian and critical exponential nonlinearities. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, v. 201, p. 14-pg., . (19/02512-5, 19/23917-3)
FARKAS, CSABA; FISCELLA, ALESSIO; WINKERT, PATRICK. Singular Finsler Double Phase Problems with Nonlinear Boundary Condition. ADVANCED NONLINEAR STUDIES, v. 21, n. 4, p. 809-825, . (19/02512-5, 19/23917-3)
VIELMA LEAL, FRANCISCO J.; PASTOR, ADEMIR. TWO SIMPLE CRITERION TO OBTAIN EXACT CONTROLLABILITY AND STABILIZATION OF A LINEAR FAMILY OF DISPERSIVE PDE'S ON A PERIODIC DOMAIN. EVOLUTION EQUATIONS AND CONTROL THEORY, . (19/02512-5, 20/14226-4)
CALSAVARA, B. M. R.; TAVARES, E. H. GOMES; SILVA, M. A. JORGE. Exponential stability for a thermo-viscoelastic Timoshenko system with fading memory. Journal of Mathematical Analysis and Applications, v. 512, n. 2, p. 17-pg., . (19/02512-5)
PEREIRA, ANDRE FERREIRA E.; PLANAS, GABRIELA. Mathematical analysis of a model describing solute trapping during solidification of binary alloys. APPLICABLE ANALYSIS, v. N/A, p. 20-pg., . (19/02512-5)
ARORA, RAKESH; FISCELLA, ALESSIO; MUKHERJEE, TUHINA; WINKERT, PATRICK. On double phase Kirchhoff problems with singular nonlinearity. ADVANCES IN NONLINEAR ANALYSIS, v. 12, n. 1, p. 24-pg., . (19/02512-5)
VIELMA LEAL, FRANCISCO J.; PASTOR, ADEMIR. CONTROL AND STABILIZATION FOR THE DISPERSION GENERALIZED BENJAMIN EQUATION ON THE CIRCLE. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, v. 28, p. 42-pg., . (20/14226-4, 19/02512-5)
PIMENTA, MARCOS T. O.; MONTENEGRO, MARCELO. Existence of a BV solution for a mean curvature equation. Journal of Differential Equations, v. 299, p. 51-64, . (19/02512-5, 19/14330-9)
HONDA LOPES, JULIANA; PLANAS, GABRIELA. On a non-isothermal incompressible Navier-Stokes-Allen-Cahn system. MONATSHEFTE FUR MATHEMATIK, v. 195, n. 4, p. 687-715, . (19/02512-5)
ZUO, JIABIN; AN, TIANQING; FISCELLA, ALESSIO. A critical Kirchhoff-type problem driven by a p (.)-fractional Laplace operator with variable s (.) -order. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, v. 44, n. 1, p. 1071-1085, . (17/19752-3, 19/02512-5)
ARAUJO, RAWLILSON O.; BOCANEGRA-RODRIGUEZ, LITO E.; CALSAVARA, BIANCA M. R.; SEMINARIO-HUERTAS, PAULO N.; SOTELO-PEJERREY, ALFREDO. Global attractors for a system of elasticity with small delays. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, v. 44, n. 8, . (19/02512-5)
NOGUERA, NORMAN; PASTOR, ADEMIR. Blow-up solutions for a system of Schrodinger equations with general quadratic-type nonlinearities in dimensions five and six. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, v. 61, n. 3, p. 35-pg., . (19/02512-5)
ARORA, RAKESH; FISCELLA, ALESSIO; MUKHERJEE, TUHINA; WINKERT, PATRICK. Existence of ground state solutions for a Choquard double phase problem. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, v. 73, p. 22-pg., . (19/02512-5)
NOGUERA, NORMAN; PASTOR, ADEMIR. A system of Schrodinger equations with general quadratic-type nonlinearities. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, v. 23, n. 04, p. 66-pg., . (19/02512-5)
NOGUERA, NORMAN; PASTOR, ADEMIR. SCATTERING OF RADIAL SOLUTIONS FOR QUADRATIC-TYPE SCHRODINGER SYSTEMS IN DIMENSION FIVE. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, v. 41, n. 8, p. 20-pg., . (19/02512-5)
FISCELLA, ALESSIO; MISHRA, PAWAN KUMAR. Fractional Kirchhoff Hardy problems with singular and critical Sobolev nonlinearities. MANUSCRIPTA MATHEMATICA, v. 168, n. 1-2, p. 45-pg., . (19/02512-5, 19/23917-3)
ZUO, JIABIN; FISCELLA, ALESSIO; BAHROUNI, ANOUAR. Existence and multiplicity results for p(.)&q(.) fractional Choquard problems with variable order. Complex Variables and Elliptic Equations, v. 67, n. 2, p. 17-pg., . (19/02512-5, 19/23917-3)
FISCELLA, ALESSIO. A Double Phase Problem Involving Hardy Potentials. APPLIED MATHEMATICS AND OPTIMIZATION, v. 85, n. 3, p. 16-pg., . (19/23917-3, 19/02512-5)
FISCELLA, ALESSIO; PINAMONTI, ANDREA. Existence and Multiplicity Results for Kirchhoff-Type Problems on a Double-Phase Setting. Mediterranean Journal of Mathematics, v. 20, n. 1, p. 19-pg., . (19/02512-5)
ZUO, JIABIN; AN, TIANQING; FISCELLA, ALESSIO. A critical Kirchhoff-type problem driven by a p(.)-fractional Laplace operator with variable s(.)-order. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, v. 44, n. 1, . (17/19752-3, 19/02512-5)
GUZMAN, CARLOS M.; PASTOR, ADEMIR. On the inhomogeneous biharmonic nonlinear Schrodinger equation: Local, global and stability results. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, v. 56, . (19/02512-5)
FISCELLA, ALESSIO; PUCCI, PATRIZIA. DEGENERATE KIRCHHOFF (p,q)-FRACTIONAL SYSTEMS WITH CRITICAL NONLINEARITIES. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, v. 23, n. 3, p. 723-752, . (19/02512-5, 19/23917-3)
PINHEIRO, CRISTYAN; PLANAS, GABRIELA. On the alpha-Navier-Stokes-Vlasov and the alpha-Navier-Stokes-Vlasov-Fokker-Planck equations. Journal of Mathematical Physics, v. 62, n. 3, . (19/02512-5)
LOPEZ-LAZARO, HERACLIO LEDGAR; MARIN-RUBIO, PEDRO; PLANAS, GABRIELA. Pullback Attractors for Non-Newtonian Fluids with Shear Dependent Viscosity. Journal of Mathematical Fluid Mechanics, v. 23, n. 2, . (19/02512-5)

Please report errors in scientific publications list using this form.
X

Report errors in this page


Error details: