Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Quadratic reformulations of nonlinear binary optimization problems

Texto completo
Autor(es):
Anthony, Martin ; Boros, Endre ; Crama, Yves ; Gruber, Aritanan
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: MATHEMATICAL PROGRAMMING; v. 162, n. 1-2, p. 115-144, MAR 2017.
Citações Web of Science: 2
Resumo

Very large nonlinear unconstrained binary optimization problems arise in a broad array of applications. Several exact or heuristic techniques have proved quite successful for solving many of these problems when the objective function is a quadratic polynomial. However, no similarly efficient methods are available for the higher degree case. Since high degree objectives are becoming increasingly important in certain application areas, such as computer vision, various techniques have been recently developed to reduce the general case to the quadratic one, at the cost of increasing the number of variables by introducing additional auxiliary variables. In this paper we initiate a systematic study of these quadratization approaches. We provide tight lower and upper bounds on the number of auxiliary variables needed in the worst-case for general objective functions, for bounded-degree functions, and for a restricted class of quadratizations. Our upper bounds are constructive, thus yielding new quadratization procedures. Finally, we completely characterize all ``minimal{''} quadratizations of negative monomials. (AU)

Processo FAPESP: 14/23269-8 - Reformulações de problemas de otimização binária: algoritmos e complexidade
Beneficiário:Aritanan Borges Garcia Gruber
Linha de fomento: Bolsas no Brasil - Pós-Doutorado