Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Investigation of rat exploratory behavior via evolving artificial neural networks

Texto completo
Autor(es):
Costa, Ariadne de Andrade ; Tinos, Renato
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF NEUROSCIENCE METHODS; v. 270, p. 102-110, SEP 1 2016.
Citações Web of Science: 0
Resumo

Background: Neuroevolution comprises the use of evolutionary computation to define the architecture and/or to train artificial neural networks (ANNs). This strategy has been employed to investigate the behavior of rats in the elevated plus-maze, which is a widely used tool for studying anxiety in mice and rats. New method: Here we propose a neuroevolutionary model, in which both the weights and the architecture of artificial neural networks (our virtual rats) are evolved by a genetic algorithm. Comparison with existing method(s): This model is an improvement of a previous model that involves the evolution of just the weights of the ANN by the genetic algorithm. In order to compare both models, we analyzed traditional measures of anxiety behavior, like the time spent and the number of entries in both open and closed arms of the maze. Results: When compared to real rat data, our findings suggest that the results from the model introduced here are statistically better than those from other models in the literature. Conclusions: In this way, the neuroevolution of architecture is clearly important for the development of the virtual rats. Moreover, this technique allowed the comprehension of the importance of different sensory units and different number of hidden neurons (performing as memory) in the ANNs (virtual rats). (C) 2016 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 13/07699-0 - Centro de Pesquisa, Inovação e Difusão em Neuromatemática - NeuroMat
Beneficiário:Jefferson Antonio Galves
Linha de fomento: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 16/00430-3 - Simulações computacionais de redes balanceadas com neurônios Integra-Dispara estocásticos
Beneficiário:Ariadne de Andrade Costa
Linha de fomento: Bolsas no Brasil - Pós-Doutorado